
DRAFT 

This Ha
it intended to 
but,

ndbook does not constitute Federal Aviation Administration (FAA) policy or guidance nor is 
be an endorsement of OOT. This Handbook is not to be used as a standalone product 

 rather, as input when considering issues in a project-specific context. 

 

DRAFT 
 

 

 

 
 

Handbook for Object-Oriented 
Technology in Aviation (OOTiA) 

 

 

 

       Volume 1: Handbook Overview 
vPC.0 

         January 30, 2004 

 
 
 
 
 

This Handbook does not constitute Federal Aviation Administration (FAA)
policy or guidance, nor is it intended to be an endorsement of object-oriented
technology (OOT). This Handbook is not to be used as a standalone product
but, rather, as input when considering issues in a project-specific context. 



DRAFT 

Contents 
1.1 HANDBOOK INTRODUCTION ........................................................................................................................1 

1.1.1 Purpose..................................................................................................................................................1 
1.1.2 Background............................................................................................................................................1 
1.1.3 Acronym List..........................................................................................................................................1 

1.2 HANDBOOK ORGANIZATION........................................................................................................................3 
1.2.1 Scope......................................................................................................................................................3 
1.2.2 Approach ...............................................................................................................................................3 

1.3 OOT BACKGROUND....................................................................................................................................5 
1.3.1 OOT Basics............................................................................................................................................5 
1.3.2 Principles of OOT..................................................................................................................................6 
1.3.3 OOT Methodology .................................................................................................................................7 
1.3.4 OOT Languages.....................................................................................................................................8 
1.3.5 Additional Key OO Concepts.................................................................................................................8 
1.3.6 Further OOT Reading............................................................................................................................8 

1.4 GLOSSARY.................................................................................................................................................10 
1.5 OOTIA WORKSHOPS ................................................................................................................................23 

1.5.1 Committee ............................................................................................................................................23 
1.5.2 Participants in Workshop #1 ...............................................................................................................23 
1.5.3 Participants in Workshop #2 ...............................................................................................................26 

1.6 REFERENCES .............................................................................................................................................30 
1.7 FEEDBACK FORM ......................................................................................................................................31 

 

 1-ii  



DRAFT 

Figures 
Figure 1.2-1:..................................................................................................................................................................3 
Figure 1.3-1 Object-Oriented Class Representation .....................................................................................................5 
Figure 1.3-2 OOA Tasks................................................................................................................................................7 
 

 

 

 

Tables 
Table 1.1-1 Acronym List ..............................................................................................................................................2 
 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-iii



Volume 1 DRAFT 

1.1 Handbook Introduction 

1.1.1 Purpose 
Compliance with the objectives of RTCA/DO-178B, Software Considerations in Airborne Systems and Equipment 
Certification [1], is the primary means of securing approval of software used in aviation products. DO-178B, which 
was published in 1992, was not written with object-oriented technology (OOT) in mind. When DO-178B was 
written, structured programming was the predominant technique for organizing and coding computer programs. 
Object-oriented technology is different, and how to meet some of the DO-178B objectives when using OOT is not 
obvious in some cases and is complicated in others.  

The purpose of this four volume Handbook is to identify key issues and provide some ways to address these issues 
when using OOT in safety critical aviation products. This Handbook also provides an approach for certification 
authorities and designees to ensure that OOT issues have been addressed in the projects they are reviewing and/or 
approving. 

1.1.2 Background 
To date, few airborne computer systems in civil aviation have been implemented using OOT. Although OOT is 
intended to promote productivity, increase reusability of software, and improve quality, uncertainty about how to 
comply with certification requirements has been a key obstacle to using OOT. 

Although organizations such as the Object Management Group (OMG) work to develop specifications for OOT, no 
universal guidelines exist for using OOT in safety-critical systems. Certification authorities have been using issue 
papers on a project-by-project basis to address OOT concerns. These project-specific issue papers document safety 
issues and concerns with OOT but do not suggest acceptable solutions.   

This Handbook extends the use of issue papers by identifying key issues and providing some guidelines to help the 
software community meet applicable DO-178B objectives when using OOT. It also provides an approach for 
certification authorities and designated engineering representatives (DERs) when evaluating OOT projects and the 
issues that may arise with respect to OOT use in DO-178B certified systems. 

The FAA sponsored the Object-Oriented Technology in Aviation (OOTiA) program to develop this Handbook for 
addressing OOT challenges in aviation. The FAA, National Aeronautics and Space Administration (NASA), other 
government organizations, academia, international certification authorities, avionics manufacturers, and aircraft 
manufacturers have collaborated through two OOTiA workshops and the OOTiA workshop committee to produce 
this Handbook [see Section 1.5]. 

It is anticipated that this Handbook and other documents may be used to impact future changes to the FAA’s 
software guidance (e.g., to impact future revisions to DO-178B). It is also anticipated that this Handbook will be 
updated in the future, as OOT in aviation matures and lessons are learned. If you have comments or suggested 
improvements to this Handbook, please complete and submit the feedback form in Section 1.7. 

1.1.3 Acronym List 
The following acronyms are used in this Handbook: 

AC Advisory Circular 
AMJ Advisory Material Joint 
API Application Programming Interface 
AVSI Aerospace Vehicle Systems Institute 
BIT Built-in Test 
CAST Certification Authorities Software Team 
CC Control Category 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  1-1 



DRAFT 

CM Configuration Management 
CORBA Common Object Request Broker Architecture 
COTS Commercial-off-the-Shelf 
CRC Class-Responsibility Collaborator 
DER Designated Engineering Representative 
EUROCAE European Organization for Civil Aviation Equipment 
FAA Federal Aviation Administration 
IEEE Institute of Electrical and Electronics Engineers 
IP Issue Paper 
JAA Joint Aviation Authorities 
LRU Line Replaceable Unit 
LSP Liskov Substitution Principle 
MC/DC Modified Condition / Decision Coverage 
NASA National Aeronautics and Space Administration 
OB Object Behavior 
OMG Object Management Group 
OO Object-Oriented 
OOA Object-Oriented Analysis 
OOD Object-Oriented Design 
OOP Object-Oriented Programming 
OOT Object-Oriented Technology 
OOTiA Object-Oriented Technology in Aviation 
OOV/T Object-Oriented Verification/Test 
OR Object Relationship 
PDS Previously Developed Software 
PSAC Plan for Software Aspects of Certification 
R-D-C Requirements-Design-Code 
RSC Reusable Software Component 
RTCA RTCA, Inc. 
SAS Software Accomplishment Summary 
SCI Software Configuration Index 
SOI Stage of Involvement 
SSA System Safety Assessment 
UML Unified Modeling Language 

Table 1.1-1 Acronym List 

 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-2



DRAFT 

1.2 Handbook Organization 

1.2.1 Scope 
This Handbook documents key issues and some acceptable approaches to address these issues when using OOT in 
safety-critical systems. It is intended to be informational and educational. This Handbook does not constitute 
Federal Aviation Administration (FAA) policy or guidance nor is it intended to be an endorsement of OOT. 
This Handbook is not to be used as a standalone product but, rather, as input when considering issues in a 
project-specific context. 

This Handbook addresses issues that were identified as having potential impact in safely applying OOT in airborne 
systems. Certification authorities, industry, and others submitted potential issues through a web site dedicated to the 
OOTiA program [7]. Some of the issues are not unique to OOT (e.g., inlining and templates); however, these issues 
are discussed in the Handbook because the way they are addressed is critical to safe implementation of OOT. Note 
that this Handbook does not address all potential issues, nor are the guidelines the only possible solutions to 
addressing the related issues. As technology advances and experience with OOT increases within the aviation 
community, this Handbook may likely be updated. 

1.2.2 Approach 
The Handbook follows a “tiered” approach as shown in Figure 1.2-1: in which each of its four volumes provides the 
foundation for all volumes above it. For example, Volume 3: Best Practices relies on contents in both Volume 1: 
Handbook Overview and Volume 2: Considerations and Issues in substantiating its guidelines.  

The four volumes are: 

• Volume 1: Handbook Overview (this volume) 

• Volume 2: Considerations and Issues 

• Volume 3: Best Practices 

• Volume 4: Certification Practices 

 

 
 

 

 

 
 

 

 

 

Volume 4:  
Certification Practices 

Volume 3: Best Practices 

Volume 2: Considerations and  Issues 

Volume 1: Handbook Overview 

Each volume is written for a uniqu
that each has a separate list of refe
consistent basis among volumes, V
to all volumes.    

 

NOTE:  This handbook does not const
Figure 1.2-1:  Figure 1.2-1: Handbook Approach
e combination of target audience and purpose. Each volume is self-contained in 
rences and index of terms applicable to that volume alone. However, to provide a 
olume 1: Handbook Overview contains the Glossary and Acronym List common 

itute official policy or guidance from any of the certification authorities.  

1-3



DRAFT 

The following sections provide the title, target audience, purpose, and overview of the contents for each volume.  

1.2.2.1 Volume 1: Handbook Overview 
Target Audience: All Handbook users 

Purpose: Provide background and foundational information needed to use all other volumes  

Contents: Handbook purpose, background, and Acronym List 

Organizational overview of Handbook into volumes 

OOT Background  

                            Handbook Glossary 

OOTiA Workshop Committee and Participants’ Lists 

References for Volume 1 

Feedback Form for suggested improvements to the Handbook 

1.2.2.2 Volume 2: Considerations and Issues 
Target Audience:Project planners, decision makers, certification authorities 

Purpose: Report and discuss the challenges collected throughout the OOTiA program. 

Contents: Considerations before making the decision to use OOT  

  Considerations after making the decision to use OOT  

Open issues 

  Summary 

  References for Volume 2 

  Results of the Beyond the Handbook session 

  Mapping of issue list to considerations 

  Additional considerations for project planning 

1.2.2.3 Volume 3:Best Practices 
Target Audience: Developers, Certification Authorities 

Purpose: Identify best practices to safely implement OOT in aviation by providing some known ways to 
address the issues documented in Volume 2 

Contents: Mapping of Volume 2 issues to Volume 3 guidelines 

Guidelines for: 

 Single inheritance and dynamic dispatch 
 Multiple inheritance  
 Templates 
 Inlining  
 Type conversion 
 Overloadingn and method resolution 
 Dead and deactivated code, and reuse 
 Object-oriented tools 
 Traceability 
 Structural coverage 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-4



DRAFT 

  References for Volume 3 

  Frequently asked questions 

  Extended guidelines and examples 

1.2.2.4 Volume 4: Certification Practices 
Target Audience: Certification authorities and designees 

Purpose: Provide an approach to ensure that OOT issues are addressed 

Contents: Activities for Stages of Involvement 1- 4 

  References for Volume 4 

1.3 OOT Background 

1.3.1 OOT Basics 
Object-oriented approaches date to the introduction of the programming language Simula in 1967. Most recently 
they have been standardized by the Object Management Group (OMG) through their definition of a Unified 
Modeling Language (UML) [17], and in other specifications related to model-driven architectures, distributed object 
communication, etc. 

OOT is a software development technique that is centered on “objects.” The Institute of  Electrical and Electronics 
Engineers (IEEE) refers to OOT as “a software development technique in which a system or component is expressed 
in terms of objects and connections between those objects” [10]. An object can be compared to a “black box” at the 
software level – it sends and receives messages.  The object contains both code (functions) and data (structures). The 
user does not need to have insight into the internal details of the object in order to use the object, hence the 
comparison to a black box. An object can model real world entities, such as a sensor or hardware controller, as 
separate software components with defined behaviors.   

A major concept in OOT is the “class.” A class is a set of objects that share the same attributes, methods, 
relationships, and semantics – they share a common structure and behavior [17]. A class describes the characteristics 
and behavior of a real world entity. Figure Figure 1.3-1 illustrates a representation of a class definition for an object. 

 

Figure 1.3-1 Object-Oriented Class Representation 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-5



DRAFT 

1.3.2 Principles of OOT 
There are seven principles that form the foundation for OOT: abstraction, encapsulation, modularity, hierarchy, 
typing, concurrency, and persistence [8]. Not all of these principles are unique to OOT, but OOT is the only 
development methodology that embodies all seven as a consistent model. Abstraction, modularity, concurrency, and 
persistence are principles that are commonly used in other development methodologies. However, encapsulation 
(using a technique called information hiding), hierarchy (using a technique called inheritance), and typing (using a 
concept called polymorphism) are relatively unique to OOT. Each of the seven principles is described below. 

Abstraction is one of the fundamental ways that complexity is addressed in software development. “An abstraction 
denotes the essential characteristics of an object that distinguish it from all other kinds of objects and thus provide 
crisply defined conceptual boundaries, relative to the perspective of the viewer" [8]. 

Encapsulation is the process of hiding the design details in the object implementation. Encapsulation can be 
described as “the mechanism that binds together code and the data it manipulates, and keeps both safe from outside 
interference and misuse” [16]. Encapsulation is generally achieved through information hiding, which is the process 
of hiding the aspects of an object that are not essential for the user to see. Typically, both the structure and the 
implementation methods of the object are hidden.  

Modularity is the process of partitioning a program into logically separated and defined components that possess 
defined interactions and limited access to data. Booch writes that modularity is a “property of a system that has been 
decomposed into a set of cohesive and loosely coupled modules” [8]. 

Hierarchy is simply the ordering of abstractions. Examples of hierarchy are single inheritance and multiple 
inheritance. In OOT, when a sub-class is created, this new class “inherits” all of the existing attributes and 
operations of the original class, called the “parent” or “superclass” [14]. Inheritance is a relationship between classes 
where one class is the “parent” (also called “base,” “superclass,” or “ancestor”) class of another [6]. One author puts 
it this way, “Inheritance is a relationship among classes where a child class can share the structure and operations of 
a parent class and adapt it for its own use” [11]. 

Inheritance is one of the key differences between OOT and conventional software development. There are two types 
of inheritance: single inheritance and multiple inheritance. In single inheritance, the sub-class inherits the attributes 
and operations from a single superclass. In multiple inheritance, the sub-class inherits some attributes from one class 
and others from another class. Multiple inheritance is controversial, because it complicates the class hierarchy and 
configuration control [15]. 

Typing is a principle that is used in OOT that has many definitions. Booch presents one of the most clear and 
concise definitions by stating, “Typing is the enforcement of the class of an object, such that objects of different 
types may not be interchanged, or at the most, they may be interchanged only in very restricted ways” [8]. Examples 
of OOT typing are strong typing, weak typing, static typing, and dynamic typing. Each OOT programming language 
varies in its implementation of typing. 

Another OOT concept closely related to typing is polymorphism. Polymorphism comes from the Greek meaning 
“many forms.” It allows one name to be used for two or more related but different purposes [16]. It is the ability of 
an object to assume or become many different forms of object. Polymorphism specifies slightly different or 
additional structure or behavior for an object, when assuming or becoming an object [12]. This allows different 
underlying implementations for the same command. For example, assume there exists a vehicle class that includes a 
steer-left command. If a boat object was created from the vehicle class, the steer-left command would be 
implemented by a push to the right on a tiller. However, if a car object was created from the same class, it might use 
a counter-clockwise rotation of the steering wheel to achieve the same command. 

Concurrency is the process of carrying out several events simultaneously. 

Persistence is “the property of an object through which its existence transcends time (i.e., the object continues to 
exist after its creator ceases to exist) and/or space (i.e., the object’s location moves from the address space in which 
it was created)” [8]. 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-6



DRAFT 

1.3.3 OOT Methodology 
OOT can typically be described in four phases: Object-Oriented Analysis (OOA), Object-Oriented Design (OOD), 
Object-Oriented Programming (OOP), and Object-Oriented Verification/Test (OOV/T). The implementation of 
these phases is typically iterative or evolutionary. An overview of each phase will be addressed below. 

OOA is the process of defining all classes that are relevant to solve the problem and the relationships and behavior 
associated with them [15].  

A number of tasks occur to carry out the OOA as shown in Figure Figure 1.3-2. The tasks are reapplied until the 
model is completed. As shown in FigureFigure 1.3-2, use cases, class-responsibility-collaborator (CRC) models, 
object-relationship (OR) models, and object-behavior (OB) models are methods typically used to carry out the OOA. 
The use case is a method utilized to identify the user’s requirements. The CRC model is used to identify the class 
attributes, operations, and hierarchy.  The OR model is used to illustrate the relationship between the numerous 
objects. And, the OB model is used to model the behavior of each object.  

 

Figure 1.3-2 OOA Tasks 

OOD transforms the OOA into a blueprint for software construction. Four layers of design are usually defined: 
subsystem layer, class and object layer, message layer, and responsibilities layer. The subsystem design layer 
represents each subsystem that enables software to achieve the requirements. The class and object design layer 
contains class hierarchies and object designs. The message design layer contains the internal and external interfaces 
to communicate between objects. The responsibilities design layer contains the algorithm design and data structures 
for attributes and operations of each object. 

OOP is the coding phase of the design project, using an OO language.  

OOV/T is the process of detecting errors and verifying correctness of the OOA, OOD, and OOP. OOV/T includes 
reviews, analyses, and tests of the software design and implementation. OOV/T requires slightly different strategies 
and tactics than the traditional structured approach. The variance in the approach is driven by characteristics like 
inheritance, encapsulation, and polymorphism. Most developers use a design for testability approach to begin 
addressing any verification/test issues early in the program. 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-7



DRAFT 

1.3.4 OOT Languages 
Many OO languages exist. Some of the most well known are C++, Smalltalk, Ada 95, and Java.  C++, Ada 95, and 
Java are of particular interest for designers of embedded software. C++’s tool support, Ada 95’s extension of Ada 
83, and Java’s platform independence make these languages very appealing to the developers of airborne systems. 
But each language has its own set of challenges. This handbook attempts to address language-specific issues, where 
possible. C# is another OO language being considered for embedded software. However, it is still maturing and is 
not yet addressed in this handbook. 

1.3.5 Additional Key OO Concepts 
In addition to the OO concepts described above, the following concepts are important OO concepts mentioned in 
this handbook. 

Dynamic dispatch is the association of a method with a call based on the run-time type of the target object. Dynamic 
dispatch is not related to dynamic linking or dynamic link libraries. Dynamic dispatch is sometimes referred to as 
“dynamic binding.” There are two types of dynamic dispatch used in OO: 

• Single dispatch is dynamic dispatch based on only the run time type of the target object. Most OO 
languages, including Java, Ada95 and C++ are single dispatching. 

• Multiple dispatch is dynamic dispatch based on the run time types of all the arguments to a call, rather than 
only the run time type of the target object. 

The Liskov substitution principle (LSP) is a set of subtyping rules that ensure that instances of a subclass are 
substitutable for instances of all parent classes in every context in which they may appear. These rules go beyond the 
simple checking of signatures, taking into account the behavior of operations (as defined by their pre- and post- 
conditions) and the invariants defined by classes. Even if classes are not defined formally, the principle can be 
upheld by requiring the inheritance of test cases.  Reference [18] provides additional insight into the LSP concept. 

LSP, i.e., substitutability, requires, quite simply, that subclasses not break the contract between client and 
implementation established by their superclasses. We cannot make new demands on clients, and must deliver on all 
promises we have made. As a result, the precondition of an operation in the subclass must be weaker (demand less) 
or the same as the precondition of the same operation in the superclass. Conversely, the postcondition must either be 
stronger (deliver more) or the same. With regard to errors, the subclass version of an operation can only report the 
same types of errors as its superclass version. Otherwise, clients would be expected to handle error cases that were 
not part of the original contract. 

Substitutability also applies to changes to the signatures of operations introduced in subclasses. In this regard, the 
types of an operation’s input parameters are logically a part of its precondition. For instance, consider the UML 
definition of an operation that takes a natural number and returns a natural number as its result, “f (p: Natural): 
Natural”. This operation could instead be specified as “f (p: Integer): Natural pre p >=0”, where the client constraint 
is now given explicitly by the precondition rather than implicitly as an invariant of type Natural.   

Similarly, the types of an operation’s output parameters (and any return parameter type) are logically a part of its 
postcondition. For example, if an operation returns a result of type Natural, then this is equivalent to specifying a 
return type of Integer and a postcondition that requires the result be “>=0”. 

1.3.6 Further OOT Reading 
The following resources are recommended for those who desire to study OOT in more depth: 

• The Object-Oriented Thought Process by Matt Weisfeld (SAMS Publishing, 2000): This book provides a 
simple introduction to the OO fundamentals. It is good for those transitioning from the structured approach 
to OO. 

• Object-Oriented Analysis and Design by Grady Booch (Addison-Wesley, 2nd edition, 1994):  This book 
provides a practical introduction to OO concepts, methods, and applications. 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-8



DRAFT 

• Pitfalls of Object-Oriented Development by Bruce Webster (M&T Books, 1995): Although somewhat 
dated, this book provides a sound overview of the potential problems in OO development. 

• Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph 
Johnson and John Vlissides (Addison-Wesley, 1995): Patterns are widely used by the OO community to 
address analysis and design problems. This book provides a guide for effective development and use of 
patterns. 

• Object-Oriented Software Construction by Bertrand Meyer (Prentice Hall, 2nd edition, 1997): Although a 
large book, this one provides good fundamental information for OO developers. 

• Testing Object-Oriented Systems: Models, Patterns, and Tools by Robert V. Binder (Addison-Wesley, 
Reading, MA, 2000):  This book addresses one of the more difficult aspects of OOT – testing.   

Note:  This is not an exhaustive list of OO references, but is merely intended to provide a starting point for those 
interested in learning more about OOT. The Reference section of this volume and the other Handbook volumes 
provide additional resources. 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-9



DRAFT 

1.4 Glossary 
This glossary provides definitions for terms used in this Handbook to discuss object-oriented technology issues. 
Many terms are taken directly from the glossary1 of RTCA/DO-178B Software Considerations in Airborne Systems 
and Equipment Certification [1]. Other terms are taken from references on object-oriented technology. References 
are noted, as appropriate, after each definition. 
Abstract class - A class that cannot be directly instantiated. Any class containing an abstract operation must itself be 
abstract. Contrast: concrete class. [2], [17] 

Abstract operation - An operation that is declared but not implemented by an abstract class. Abstract operations do 
not have associated methods (bodies) in the class that defines them, but must have an associated implementation in 
concrete subclasses. See: operation, method. [2], [8] 

Abstract pattern – A pattern that does not prescribe a particular approach. Additional guidelines are defined by sub-
patterns of the abstract pattern where these guidelines vary by the approach used. 

Access mechanism - The manner in which a software component is called upon to perform its intended function. 
This includes invocation mechanisms and data flow to and from the component. This is typically part of the 
interface description data. [3] 

Actual parameter - See: argument  

Algorithm - A finite set of well-defined rules that gives a sequence of operations for performing a specific task. [1] 

Anomalous behavior - Behavior that is inconsistent with specified requirements. [1] 

Applicant - A person or organization seeking approval from the certification authority. [1] 

Approval - The act or instance of expressing a favorable opinion or giving formal or official sanction. [1] 

Argument - A binding for a parameter that resolves to a run-time instance. Synonym: actual parameter. Contrast: 
parameter. [17] 

Aspect-oriented programming - An approach used to encapsulate policies and strategies that cross cut the core 
functionality of a system. Such system or subsystem wide policies are referred to aspects. They include policies for 
error handling, synchronization, resource allocation, fault-tolerance, performance, software monitoring, distributed 
data access, and other potentially safety related issues. Aspect-oriented programming is generally viewed as 
complementary to object-oriented development. [2] 

Association - The semantic relationship between two or more classifiers that specifies connections among their 
instances. Such connections may be represented as pointers or access types that reference other objects. They may 
also be computed rather than stored. [2], [17] 

Assurance - The planned and systematic actions necessary to provide adequate confidence and evidence that a 
product or process satisfies given requirements. [1] 

Attribute - A feature within a class that describes a range of values those instances of the class may hold.  Attributes 
are stored values or fields in Ada95, C++ and Java. They may represent either data values or references to other 
objects (association ends). [2], [17] 

Audit - An independent examination of the software life cycle processes and their outputs to confirm required 
attributes. [1] 

Baseline - The approved, recorded configuration of one or more configuration items, that thereafter serves as the 
basis for further development, and that is changed only through change control procedures. [1] 

Certification - Legal recognition by the certification authority that a product, service, organization or person 
complies with the requirements. Such certification comprises the activity of technically checking the product, 
service, organization or person and the formal recognition of compliance with the applicable requirements by issue 
                                                           
1 The glossary definition from RTCA/DO-178B are used with permission of the RTCA. 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-10



DRAFT 

of a certificate, license, approval or other documents as required by national laws and procedures. In particular, 
certification of a product involves: (a) the process of assessing the design of a product to ensure that it complies with 
a set of standards applicable to that type of product so as to demonstrate an acceptable level of safety; (b) the process 
of assessing an individual product to ensure that it conforms with the certified type design; (c) the issuance of a 
certificate required by national laws to declare that compliance or conformity has been found with standards in 
accordance with items (a) or (b) above. [1] 

Certification Authority - The organization or person responsible within the state or country concerned with the 
certification of compliance with the requirements. 

Note: A matter concerned with aircraft, engine or propeller type certification or with equipment approval would 
usually be addressed by the certification authority; matters concerned with continuing airworthiness might be 
addressed by what would be referred to as the airworthiness authority. [1] 

Certification credit - Acceptance by the certification authority that a process, product, or demonstration satisfies a 
certification requirement. [1] 

Change control - (1) The process of recording, evaluating, approving or disapproving and coordinating changes to 
configuration items after formal establishment of their configuration identification or to baselines after their 
establishment. (2) The systematic evaluation, coordination, approval or disapproval and implementation of approved 
changes in the configuration of a configuration item after formal establishment of its configuration identification or 
to baselines after their establishment.  

Note: This term may be called configuration control in other industry standards. [1] 

Checked type conversion - Types are checked if conversion from one type to the other includes a determination 
either by the compiler or at run time as to whether they are normally convertible.  

Child - In a generalization relationship, the specialization of another element, the parent. See: subclass, subtype. 
Contrast: parent. Child classes inherit from their parent classes. Similarly, subclasses inherit from their superclasses. 
[2], [17] 

Class - Informally, any classifier. Formally, a description of a set of objects that share the same attributes, 
operations, methods, relationships, and semantics. A class may use a set of interfaces to specify collections of 
operations it provides to its environment. [2], [17] 

Class hierarchy - A collection of classes connected by generalization relationships. The root of the hierarchy 
represents the most general of these classes. The leaves represent the most specific of these classes. Synonym: 
Inheritance hierarchy.  

Classifier – The Unified Modeling Language (UML) defines the term classifier to include interfaces, classes, 
datatypes, and components. In the Aerospace Vehicle Systems Institute (AVSI) guide (and elsewhere) the term class 
is often used informally as a synonym for classifier. Formally, however, classes describe only objects, which have an 
identity and state, and not datatypes, interfaces, or components. [2], [17] 

Client class – a class that can reference the attributes of another class 

Client operation – an operation accessible to classes other than the defining class and its subclasses. 

Code - The implementation of particular data or a particular computer program in a symbolic form, such as source 
code, object code or machine code. [1] 

Code-sharing - The sharing of code by more than one class or component, e.g. by means of implementation 
inheritance or delegation. See: implementation inheritance, delegation. 

Note: There are many ways to support the sharing of code. The risk is that inheritance can be misused to support 
only the sharing of code and data structure, without attempting to follow behavioral subtyping rules.  

Commercial off-the-shelf (COTS) software - Commercially available applications sold by vendors through public 
catalog listings. COTS software is not intended to be customized or enhanced. Contract-negotiated software 
developed for a specific application is not COTS software. [1] 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-11



DRAFT 

Compiler - Program that translates source code statements of a high level language, such as FORTRAN or Pascal, 
into object code. [1] 

Component - (1) A self-contained part, combination of parts, sub-assemblies or units, which performs a distinct 
function of a system.  (2) A physical, replaceable part of a system that packages implementation and provides the 
realization of a set of interfaces.  [1], [17] 

Concrete class - A class that can be directly instantiated. A concrete class has no abstract operations. Contrast: 
abstract class. [2], [17] 

Concrete operation - An operation that has an associated method in the context of a given class. Contrast: abstract 
operation. [2] 

Condition - A Boolean expression containing no Boolean operators. [1] 

Condition/Decision Coverage - Every point of entry and exit in the program has been invoked at least once, every 
condition in a decision in the program has taken on all possible outcomes at least once, and every decision in the 
program has taken on all possible outcomes at least once. [1] 

Configuration identification - (1) The process of designating the configuration items in a system and recording their 
characteristics. (2) The approved documentation that defines a configuration item. [1] 

Configuration item - (1) One or more hardware or software components treated as a unit for configuration 
management purposes. (2) Software life cycle data treated as a unit for configuration management purposes. [1] 

Configuration management - (1) The process of identifying and defining the configuration items of a system, 
controlling the release and change of these items throughout the software life cycle, recording and reporting the 
status of configuration items and change requests and verifying the completeness and correctness of configuration 
items. (2) A discipline applying technical and administrative direction and surveillance to: (a) identify and record the 
functional and physical characteristics of a configuration item, (b) control changes to those characteristics, and (c) 
record and report change control processing and implementation status. [1] 

Configuration status accounting - The recording and reporting of the information necessary to manage a 
configuration effectively, including a listing of the approved configuration identification, the status of proposed 
changes to the configuration and the implementation status of approved changes. [1] 

Constraint - A semantic condition or restriction.  Constraints include preconditions, postconditions, and invariants. 
They may apply to a single class of objects, to relationships between classes of objects, to states, or to use cases. 
[17] 

Constructor - An operation that creates an object and/or initializes its state. Formally the constructor is responsible 
for establishing any class invariant.  

Control coupling - The manner or degree by which one software component influences the execution of another 
software component. [1] 

Control coupling analysis - Evaluation of the execution relationships and dependencies between software 
components and in component logic to ensure application execution is correctly designed and implemented.  

Control flow analysis - (1) Analysis typically used in the identification and confirmation of control coupling. DO-
178B does not explicitly define this term or the related term control flow. However, it references both (on pages 21, 
28, 52, 61, and 57). [1] (2) Analysis whose objectives are: to ensure the code is executed in the right sequence, to 
ensure the code is well structured, to locate any syntactically unreachable code, and to highlight parts of the code 
where termination needs to be considered, i.e. loops and recursion. Call tree analysis is cited as an example of one of 
many control flow analysis techniques, and is offered as a means of confirming that design rules for the partitioning 
of critical and non-critical code have been followed. [5] 

Control program - A computer program designed to schedule and to supervise the execution of programs in a 
computer system; e.g., operating system, executive, run-time system. [1] 

Conversion - See: type conversion. 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-12



DRAFT 

CORBA - An industry wide standard for communication between distributed objects, independent of their location 
and target language. The CORBA standard is defined by the Object Management Group (OMG). CORBA itself is 
an acronym for Common Object Request Broker Architecture. [2] 

Coupling - A relationship between components or elements.  

Coverage analysis - The process of determining the degree to which a proposed software verification process 
activity satisfies its objective. [1] 

Credit - The compliance to one or more RTCA/DO-178B objectives supported by RTCA/DO-178B software life 
cycle data. This compliance is used to show that the certification basis has been met and the equipment may receive 
a certificate.  Three types of credit are referred to throughout AC 20-RSC: 

(1) Full credit – fully meets the RTCA/DO-178B objective and requires no further activity by the user. 

(2) Partial credit – partially meets the RTCA/DO-178B objective and requires additional activity by the user to 
complete compliance. 

(3) No credit – does not meet the RTCA/DO-178B objective and must be completed by the user for 
compliance. [3] 

Data abstraction - An abstraction denotes the essential characteristics of an object that distinguish it from all other 
kinds of objects, suppressing all non-essential details. In data abstraction the non-essential details deal with the 
underling data representation. [8] [17] 

Database - A set of data, part or the whole of another set of data, consisting of at least one file that is sufficient for a 
given purpose or for a given data processing system. [1] 

Data coupling - The dependence of a software component on data not exclusively under the control of that software 
component. [1] 

Data coupling analysis - An evaluation of the data flow relationships and dependencies between software 
components to ensure they are correctly designed and implemented.  

Data dictionary - The detailed description of data, parameters, variables, and constants used by the system. [1] 

Data flow analysis - (1) Analysis typically used in the identification and confirmation of data coupling. DO-178B 
does not explicitly define this term or the related term data flow. However, it references both (on pages 21, 28, 52, 
61, and 57). [1]  (2) Analysis whose objective is to show that there is no execution path in the software that would 
access a variable that has not been set a value. Data flow analysis uses the results of control flow analysis in 
conjunction with the read or write access to variables to perform the analysis. Data flow analysis can also detect 
other code anomalies such as multiple writes without intervening reads. [5] 

Data type, Datatype - (1) A class of data characterized by the members of the class and the operations that can be 
applied to them. Examples are character types and enumeration types. (2) A descriptor of a set of values that lack 
identity and whose operations do not have side effects. Datatypes include primitive pre-defined types and user-
definable types. Pre-defined types include numbers, string and time.User-definable types include enumerations. 

Note: Instances of datatypes, unlike objects, do not have identity or state, but are immutable. As a result, 
operations on data types do not change the state of values they act upon, but compute new values based on existing 
ones.  Some languages use the term immutable in combination with terms class and object to denote a data type and 
its values. [1], [2] 

Deactivated code - Executable object code (or data) which by design is either (a) not intended to be executed (code) 
or used (data), for example, a part of a previously developed software component, or (b) is only executed (code) or 
used (data) in certain configurations of the target computer environment, for example, code that is enabled by a 
hardware pin selection or software programmed options. [1] 

Dead code - Executable object code (or data) which, as a result of a design error cannot be executed (code) or used 
(data) in a operational configuration of the target computer environment and is not traceable to a system or software 
requirement. An exception is embedded identifiers. [1] 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-13



DRAFT 

Decision - A Boolean expression composed of conditions and zero or more Boolean operators. A decision without a 
Boolean operator is a condition. If a condition appears more than once in a decision, each occurrence is a distinct 
condition. [1] 

Decision Coverage - Every point of entry and exit in the program has been invoked at least once and every decision 
in the program has taken on all possible outcomes at least once. [1] 

Declared type - The type associated with a name (such as a variable, constant or parameter) at its point of 
declaration. The run-time type of any associated object must be a subtype of its declared type. [2] 

Delegation - The implementation of an operation by means of a call to an equivalent operation on a component 
object (the delegate). Delegation can be used as an alternative to implementation inheritance. Contrast: inheritance. 
[2] 

Derived requirements - Additional requirements resulting from the software development processes, which may not 
be directly traceable to higher level requirements. [1] 

Derived type - A type derived for specialization from another type. The derived type is a specialization from the 
conceptual point of view and may be an expansion from the structural point of view. [4] 

Design pattern – A documented solution to a commonly encountered design problem. In general, a design pattern 
presents a problem, followed by a description of its solution in a given context and programming language. In this 
Handbook, each pattern presents a problem addressed by a specific OO feature, followed by a description of 
acceptable use of the feature in the context of DO-178B. [2] 

Destructor - An operation that frees the state of an object and/or destroys the object itself. [8] 

Dynamic binding - See: dynamic dispatch.  

Dynamic classification - A semantic variation of generalization in which an object may change its classifier. 
Contrast: static classification. Using dynamic classification, the class of an object may change during its life time. 
Using static classification, it may not. [2], [17] 

Dynamic dispatch - The association of a method with a call based on the run-time type of the target object. Dynamic 
dispatch is not related to dynamic linking or dynamic link libraries. Synonym: dynamic binding. [2] 

Dynamic loading (of classes) - The loading of classes dynamically (at run time) when they are first referenced by an 
application. The desktop Java environment, for example, provides a class loader capable of finding and loading a 
named class appearing in any of a prescribed list of locations, which may be either local or remote. In real-time 
systems, class loading is generally not supported or permitted.  

Emulator - A device, computer program, or system that accepts the same inputs and produces the same output as a 
given system using the same object code. [1] 

Equivalence class - The partition of the input domain of a program such that a test of a representative value of the 
class is equivalent to a test of other values of the class. [1] 

Error - With respect to software, a mistake in requirements, design or code. [1] 

Executable Object Code - Consists of a form of Source/Object Code that is directly usable by the central processing 
unit of the target computer and is, therefore, the software that is loaded into the hardware or system. [1], page 54 

Explicit type conversion - Conversion of a value from its type to a designated type by use of a conversion routine.  

Failure - The inability of a system or system component to perform a required function within specified limits. A 
failure may be produced when a fault is encountered. [1] 

Failure condition - The effect on the aircraft and its occupants both direct and consequential, caused or contributed 
to by one or more failures, considering relevant adverse operational and environmental conditions. A failure 
condition is classified according to the severity of its effect as defined in FAA AC 25.1309-1A or JAA AMJ 
25.1309. [1] 

Fault - A manifestation of an error in software. A fault, if it occurs, may cause a failure. [1] 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-14



DRAFT 

Fault tolerance - The built-in capability of a system to provide continued correct execution in the presence of a 
limited number of hardware or software faults. [1] 

Feature - An attribute, operation, or method. This includes attributes that reference other objects (i.e., association 
ends). Features correspond to methods and fields in Java, methods and function members in C++, and subprograms 
and record fields in Ada95. 

Flattened class - The flattened form of a class is a self contained module representing the composition of its 
elements with those inherited by it, taking into account the rules for inheritance associated with the language. 
Inherited elements appear in the flattened class if 1) they are defined by a superclass and never overridden, or 2) if 
they are defined by a superclass and referenced by some other element that is not overridden. Some languages (e.g., 
Eiffel) allow you to print the flattened form of a class interface. This is useful to clients because it specifies the full 
client interface, eliminating the need to refer to superclass definitions. [13] 

Flow analysis - A term encompassing both control flow analysis and data flow analysis. [2] 

Formal methods - Descriptive notations and analytical methods used to construct, develop and reason about 
mathematical models of system behavior. [1] 

Framework - A framework is a partially completed software application, which has a set of related classes that can 
be specialized and/or instantiated to implement the application. Since the UML is a formally defined language, some 
of the existing visual modeling tools use existing frameworks to help the coder/developer generate complete 
applications from UML models.   

Note: Most applications contain about 70% of reused code, which is redeveloped every time we compose an 
application (i.e. task managers, memory managers, queues, and event managers).    

Generalization - A taxonomic relationship between a more general element and a more specific element. The more 
specific element is fully consistent with the more general element and contains additional information. An instance 
of the more specific element may be used where the more general element is allowed. See: inheritance. [17] 

Generic - An Ada program unit that allows the same logical function on more than one type of data.  

Hard real-time system – A real-time system in which lateness is not accepted under any circumstance. [6] 

Hardware/software integration - The process of combining the software into the target computer. [1] 

High-level requirements - Software requirements developed from analysis of system requirements, safety-related 
requirements, and system architecture. [1] 

Host computer - The computer on which the software is developed. [1] 

Immutable - Incapable of being changed. Immutable objects represent values whose state cannot be changed (e.g., 
the string literal “ABC” or the integer literal “4”). Immutable values, however, may be combined to produce new 
values. The string  “ABC”, for example, may be concatenated with the string “DEF” to produce a new immutable 
string value “ABCDEF”.  

Implementation - A definition of how something is constructed or computed. For example, a class is an 
implementation of a type, a method is an implementation of an operation. [17] 

Implementation inheritance - The inheritance of the implementation of a more specific element. Includes inheritance 
of the interface. Contrast: interface inheritance. Unlike interface inheritance, the inherited elements are more than 
specifications. They contribute to the executable object code. [2], [17] 

Implicit type conversion - A type conversion generated by the compiler as the result of an association between 
variables of different types, resulting in a value being converted to an expected type based on context.  

Independence - Separation of responsibilities which ensures the accomplishment of objective evaluation. (1) For 
software verification process activities, independence is achieved when the verification activity is performed by a 
person(s) other than the developer of the item being verified, and a tool(s) may be used to achieve an equivalence to 
the human verification activity. (2) For the software quality assurance process, independence also includes the 
authority to ensure corrective action. [1] 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-15



DRAFT 

Inheritance - A mechanism by which more specific elements incorporate (inherit) the structure and behavior of more 
general elements. Inheritance can be used to support generalization, or misused to support only code sharing, 
without attempting to follow behavioral subtyping rules. See: generalization, Liskov substitution principle. [17] 

Inheritance hierarchy - See: class hierarchy  

Inherited element - An element of a class inherited by its subclasses. In UML, inherited elements include operations, 
methods, associations and constraints involving classes.  

Inline - A command used in Java, Ada, and C++ to hint to the compiler that expansion of a method body within the 
code of a calling method is to be preferred to the usual call implementation. For all of these languages, the compiler 
can follow or ignore the recommendation to inline. [2]  

Instance - An entity to which a set of operations can be applied and which has a state that stores the effects of the 
operations. See: object. [2] 

Integral process - A process which assists the software development processes and other integral processes and, 
therefore, remains active throughout the software life cycle. The integral processes are the software verification 
process, the software quality assurance process, the software configuration management process, and the 
certification liaison process. [1] 

Integrator - The manufacturer responsible for integrating the reusable software component into the target computer 
and system with other software components. [3] 

Interface - A definition of the features accessible to clients of a class. Interfaces are distinct from classes, which may 
also contain methods, associations and modifiable attributes.  

Note: The UML definition of interface differs slightly from that defined by Java in that Java interfaces may 
contain constant fields, while UML interfaces may contain only operations. [2] 

Interface description data - identifies the interface details of the reusable software component.  It is provided by the 
reusable software component developer to the integrator and applicant.  The interface description data should 
explicitly define what activities are required by the integrator and/or applicant to ensure that the reusable software 
component will function in accordance with its approval basis. [3] 

Interface inheritance - The inheritance of the interface of a more specific element. Does not include inheritance of 
the implementation. Contrast: implementation inheritance.  Unlike implementation inheritance, the inherited 
elements are only specifications. They are not contained in the executable object code. [2], [17] 

Interrupt - A suspension of a task, such as the execution of a computer program, caused by an event external to that 
task, and performed in such a way that the task can be resumed. [1] 

Invariant - A condition associated with a class that is established when a new instance of the class is created and 
must be maintained by all its publicly accessible operations. As a result, the invariant is effectively a part of the 
precondition and the postcondition of every such operation. It may be violated in the intermediate states that 
represent the execution of a given method so long as the operations of the object are properly synchronized and such 
violations are not externally observable. [2] 

Liskov substitution principle (LSP) - A set of subtyping rules that ensure that instances of a subclass are 
substitutable for instances of all parent classes in every context in which they may appear. These rules go beyond the 
simple checking of signatures, taking into account the behavior of operations (as defined by their pre and post 
conditions) and the invariants defined by classes. Even if classes are not defined formally, the principle can be 
upheld by requiring the inheritance of test cases. [2] 

Logically unrelated types - Types are logically unrelated when one does not define a set of operations that is a subset 
of the other.  

Low-level requirements - Software requirements derived from high-level requirements, derived requirements, and 
design constraints from which source code can be directly implemented without further information. [1] 

Macro-expansion - Full expansion of the code generated by the compiler for each instantiation of a template.  

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-16



DRAFT 

Maintenance code - Code residing in a airborne computer-based system that interfaces with an onboard maintenance 
computer or computer used by maintenance personnel. The function of this code is usually to report to the 
maintenance computer any problems detected during normal operations. [3] 

Means of compliance - The intended method(s) to be used by the applicant to satisfy the requirements stated in the 
certification basis for an aircraft or engine. Examples include statements, drawings, analyses, calculations, testing, 
simulation, inspection, and environmental qualification. Advisory material issued by the certification authority is 
used if appropriate. [1] 

Media - Devices or material which act as a means of transferal or storage of software, for example, programmable 
read-only memory, magnetic tapes or discs, and paper. [1] 

Memory device - An article of hardware capable of storing machine-readable computer programs and associated 
data. It may be an integrated circuit chip, a circuit card containing integrated circuit chips, a core memory, a disk, or 
a magnetic tape. [1] 

Method - The implementation of an operation. A method specifies the algorithm or procedure associated with an 
operation. A method corresponds to a subprogram with a body in Ada95, to a function member with a body in C++, 
and to a concrete method in Java.  See: operation. [2], [17] 

Modified Condition/Decision Coverage - Every point of entry and exit in the program has been invoked at least 
once, every condition in a decision in the program has taken all possible outcomes at least once, every decision in 
the program has taken all possible outcomes at least once, and each condition in a decision has been shown to 
independently affect that decision's outcome. A condition is shown to independently affect a decision's outcome by 
varying just that condition while holding fixed all other possible conditions. [1] 

Monitoring - (1) [Safety] Functionality within a system which is designed to detect anomalous behavior of that 
system. (2) [Quality Assurance] The act of witnessing or inspecting selected instances of test, inspection, or other 
activity, or records of those activities, to assure that the activity is under control and that the reported results are 
representative of the expected results. Monitoring is usually associated with activities done over an extended period 
of time where 100% witnessing is considered impractical or unnecessary. Monitoring permits authentication that the 
claimed activity was performed as planned. [1] 

Multimethod – A method invoked using multiple dispatch.  Multimethods differ from ordinary methods in that the 
run-time classes of all parameters are considered when the most method to respond to a particular call. 

Multiple dispatch - Dynamic dispatch based on the run time types of all the arguments to a call, rather than only the 
run time type of the target object. Contrast: single dispatch. [2] 

Multiple inheritance - A semantic variation of generalization in which a type (a class) may have more than one 
supertype (superclass). Contrast: single inheritance. [17] 

Multiple-version dissimilar software - A set of two or more programs developed separately to satisfy the same 
functional requirements. Errors specific to one of the versions are detected by comparison of the multiple outputs. 
[1] 

Object - An entity with a well-defined boundary and identity that encapsulates state and behavior. State is 
represented by attributes and relationships; behavior is represented by operations, methods, and state machines. An 
object is an instance of a class. See: class, instance. [17] 

Object Code - A low-level representation of the computer program not usually in a form directly usable by the target 
computer but in a form which includes relocation information in addition to the processor instruction information. 
[1] 

Object Management Group (OMG) - A standards body for the object-oriented development community. The 
membership includes all major object-oriented tool vendors, many companies offering OO training and consulting 
services, many companies offering COTS software, and many end users of OO technology, including several of the 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-17



DRAFT 

members of AVSI. The OMG defines interface standards for distributed object communication (CORBA) and for 
OO modeling tools (UML). [2] 

Object-oriented (OO) - (1) the use of classes to support encapsulation, (2) the use of inheritance of interfaces to 
support subtyping, (3) the use of inheritance of implementation (state and code) to support subclassing, and (4) the 
use of dynamic dispatch (virtual method invocation) to support polymorphism and the inheritance of code. [2] 

Operation - A service that can be requested of an object. An operation has a signature, which may restrict the actual 
parameters that are possible. An operation corresponds to a subprogram declaration in Ada95, to a function member 
declaration in C++, and to an abstract method declaration in Java. It does not define an associated implementation.  
See method. [2], [17] 

Other memory usage analysis - related to the sharing of resources between different software ‘partitions’. These 
forms of analysis include, but are not limited to, memory (heap), I/O ports, and special purpose hardware, which 
perform specific computations or watch dog timer functions. [5 see p. 6, section 2.3.6] 

Overloading – Use of the same name for different operators or behavioral features (operations or methods) visible 
within the same scope.     

Overriding - The redefinition of an operation or method in a subclass. [2] 

Parameter - The specification of a variable that can be changed, passed, or returned. A parameter may include a 
name, type, and direction.  Parameters are used for operations, messages, and events. [17] 

Parent - In an inheritance relationship, the generalization of another element, producing the child. See: superclass, 
supertype.   Contrast: child, subclass, subtype.  Child classes inherit from their parent classes. Similarly, subclasses 
inherit from their superclasses. [2], [17] 

Part number - A set of numbers, letters or other characters used to identify a configuration item. [1] 

Patch - A modification to an object program, in which one or more of the planned steps of re-compiling, re-
assembling or re-linking is bypassed. This does not include identifiers embedded in the software product, for 
example, part numbers and checksums. [1] 

Pattern - A documented solution to a commonly encountered analysis or design problem. Each pattern documents a 
single solution to the problem in a given context. Patterns are used in this Handbook to document object-oriented 
solutions to common analysis and design problems in the context of DO-178B. [2] 

Polymorphism - A concept in type theory, according to which a name (such as a variable) may denote objects of 
many different classes that are related by some common superclass; thus, any object denoted by this name is able to 
respond to some common set of operations in different ways. [8] 

Postcondition - A constraint that must be true at the completion of an operation. [17] 

Precondition - A constraint that must be true when an operation is invoked. [17] 

Process - A collection of activities performed in the software life cycle to produce a definable output or product. [1] 

Process pattern – A documented solution to a problem with the software development process.  A process pattern 
presents the problem, followed by a description of its solution in a given context. In this Handbook, the context is 
generally DO-178B compliance. [2] 

Product service history - A contiguous period of time during which the software is operated within a known 
environment, and during which successive failures are recorded. [1] 

Proof of correctness - A logically sound argument that a program satisfies its requirements. [1] 

Range checking - verification that data values lie within specified ranges and maintain a specified accuracy. Range 
checking includes, but is not limited to, overflow and underflow analysis, the detection of rounding errors, range 
checking, and the checking of array bounds. [5] 

Real-time system – A system that responds in a (timely) predictable way to unpredictable external stimuli arrivals. A 
Real-Time System has to fulfill under extreme load conditions including:  

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-18



DRAFT 

• timeliness: meet deadlines, it is required that the application has to finish certain tasks within the time 
boundaries it has to respect.  

• simultaneity or simultaneous processing: more than one event may happen simultaneously, all deadlines 
should be met.  

• predictability: the real-time system has to react to all possible events in a predictable way.  

• dependability or trustworthiness: it is necessary that the real-time system environment can rely on it. [6] 

Relationship - A semantic connection among model elements. Examples of relationships include associations and 
generalizations. [17] 

Release - The act of formally making available and authorizing the use of a retrievable configuration item. [1] 

Repeated inheritance – The inheritance of an element via more than one path through the inheritance hierarchy. 

Requirements-Based Testing – (1) Testing performed using test cases and procedures developed to confirm that the 
software performs its intended function as specified by its requirements. Requirements-based testing includes both 
normal range test cases, and robustness (abnormal range) test cases. The test cases are to be developed from the 
software requirements and the errors sources inherent in the software development process. [1]  (2) Testing 
performed with the objective of showing that the actual behavior of the program is in accordance with its 
requirements. Two common methods are cited for conducting requirements-based testing: equivalence class testing, 
and boundary value testing. [5] The use of the term in this Handbook is intended to encompass both definitions.  

Requirements, Design, and Code Standards (R-D-C Standards) - Guidelines used to control, develop and review 
software requirements, design, and code. [1]  

Reusable software component (RSC) - The software, its supporting RTCA/DO-178B software life cycle data, and 
additional supporting documentation being considered for reuse. The component designated for reuse may be any 
collection of software, such as, libraries, operating systems, or specific system software functions. [3] 

Reverse engineering - The method of extracting software design information from the source code. [1] 

Robustness - The extent to which software can continue to operate correctly despite invalid inputs. [1] 

Run-time type/class - The type/class associated with an object at run-time, e.g. when the object is first created. In 
Ada95, this is the tag associated with objects of a tagged type. [2] 

Scalar types - A type that defines a variable containing a single value at run time. A scalar type is either a discrete 
type or a real type. The values of a scalar type are ordered.  

Signature - The name and parameter types of an operation or method. A signature may include an optional returned 
parameter type (depending upon the target language). [17] 

Simple dispatch - A restricted form of single dispatch, in which (a) all calls other than method extensions are 
dispatching, and (b) dispatch is semantically equivalent to invocation of a dispatch routine containing a case 
statement. [2] 

Simulator - A device, computer program or system used during software verification, that accepts the same inputs 
and produces the same output as a given system, using object code which is derived from the original object code. 
[1] 

Single dispatch - Dynamic dispatch based on only the run time type of the target object. Most OO languages, 
including Java, Ada95 and C++ are single dispatching. Contrast: multiple dispatch. [17] 

Single inheritance - A semantic variation of generalization in which a type (a class) may have only one supertype 
(superclass). Contrast: multiple inheritance. [17] 

Software - Computer programs and, possibly, associated documentation and data pertaining to the operation of a 
computer system. [1] 

Software architecture - The structure of the software selected to implement the software requirements. [1] 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-19



DRAFT 

Software change - A modification in source code, object code, executable object code, or its related documentation 
from its baseline. [1] 

Software integration - The process of combining code components. [1] 

Software Level - One of the software levels defined by DO-178B, section 2.2.2.  Software level is based upon the 
contribution of software to potential failure conditions as determined by the safety assessment process.  [1] 

Software library - A controlled repository containing a collection of software and related data and documents 
designed to aid in software development, use or modification. Examples include software development library, 
master library, production library, program library and software repository. [1] 

Software life cycle - (1) An ordered collection of processes determined by an organization to be sufficient and 
adequate to produce a software product. (2) The period of time that begins with the decision to produce or modify a 
software product and ends when the product is retired from service. [1] 

Software partitioning - The process of separating, usually with the express purpose of isolating one or more 
attributes of the software, to prevent specific interactions and cross-coupling interference. [1] 

Software product - The set of computer programs, and associated documentation and data, designated for delivery to 
a user. In the context of DO-178B, this term refers to software intended for use in airborne applications and the 
associated software life cycle data. [1] 

Software requirement - A description of what is to be produced by the software given the inputs and constraints. 
Software requirements include both high-level requirements and low-level requirements. [1] 

Software tool - A computer program used to help develop, test, analyze, produce or modify another program or its 
documentation. Examples are an automated design tool, a compiler, test tools and modification tools. [1] 

Source code - Code written in source languages, such as assembly language and/or high level language, in a 
machine-readable form for input to an assembler or a compiler. [1] 

Stack usage analysis - A form of shared resource analysis that establishes the maximum possible size of the stack 
required by the system and whether there is sufficient physical memory to support this stack size. Some compilers 
use multiple stacks, and this form of analysis is required for each stack. Potential stack-heap allocation collisions, 
when these forms of storage compete for the same space, are also included. [5] 

Standard - A rule or basis of comparison used to provide both guidance in and assessment of the performance of a 
given activity or the content of a specified data item. [1] 

State - A condition or situation during the life of an object during which it satisfies some condition, performs some 
activity, or waits for some event. [17] 

Statement coverage - Every statement in the program has been invoked at least once. [1] 

Static analyzer - A software tool that helps to reveal certain properties of a program without executing the program. 
[1] 

Static classification - A semantic variation of generalization in which an object may not change [its] classifier. 
Contrast: dynamic classification. Using dynamic classification, the class of an object may change during its life 
time. Using static classification, it may not. [2], [17] 

Strongly typed - A characteristic of a programming language, according to which all expressions are guaranteed to 
be type consistent. [8]  

Strongly typed language - A strongly typed language associates a type with each data element (variable or 
expression), and ensures that only operations appropriate to that type are applied to the data element.  Only 
meaningful conversions between logically related types are permitted.  A subset of a language may be considered 
strongly typed, even if the full language is not. 

Structural coverage - A software-program method of determining the adequacy of the extent of the verification 
accomplished in the composition/decomposition of the software program.  

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-20



DRAFT 

Structural coverage analysis - An analysis that (1) determines which software structures and code structures were 
not exercised by the requirements based test procedures; and (2) provides traceability between the implementation of 
the software requirements in the code structure and the verification of those requirements via test cases. [1] 

Structure - A specified arrangement or interrelation of parts to form a whole. [1] 

Subclass - In a generalization relationship, the specialization of another class; the superclass (parent). See: 
generalization, child. Contrast: superclass (parent).   

Note: “subclass” and “child” are used interchangeably in object-oriented development. [17] 

Subinterface - a subclass/subtype that is an interface (defines no methods, associations or modifiable attributes). See: 
interface. 

Subtype - In a generalization relationship, the specialization of another type; the supertype. See: generalization. 
Contrast: supertype. [2], [17] 

Superclass - In a generalization relationship, the generalization of another class; the subclass. See: generalization. 
Contrast: subclass. 

Note: “superclass” and “parent” are used interchangeably in object-oriented development. [17] 

Superinterface - a superclass/supertype that is an interface (defines no methods, associations or modifiable 
attributes). See: interface. 

Supertype - In a generalization relationship, the generalization of another type; the subtype. See: generalization. 
Contrast: subtype. [17] 

System - A collection of hardware and software components organized to accomplish a specific function or set of 
functions. [1] 

System architecture - The structure of the hardware and the software selected to implement the system requirements. 
[1] 

System safety assessment - An ongoing, systematic, comprehensive evaluation of the proposed system to show that 
relevant safety-related requirements are satisfied. [1] 

System safety assessment process - Those activities which demonstrate compliance with airworthiness requirements 
and associated guidance material, such as, JAA AMJ/FAA AC 25.1309. The major activities within this process 
include: functional hazard assessment, preliminary system safety assessment, and system safety assessment. The 
rigor of the activities will depend on the criticality, complexity, novelty, and relevant service experience of the 
system concerned. [1] 

Target computer - The physical processor that will execute the program while airborne. [3] 

Target computer environment - The target computer and all its support hardware and systems needed to function in 
its actual airborne environment. [3] 

Target environment - See: target computer environment. [3] 

Target object - The object that is the target of a method call [most often written targetObject.methodName 
(argumentList);]. Dynamic dispatch typically involves selection of a method based on the declared types of the 
arguments and the run-time type of the target object. [2] 

Task - The basic unit of work from the standpoint of a control program. [1] 

Template - A parameterized model element with unbound (formal) parameters that must be bound to actual (type) 
parameters before it can be used. At a target language level, templates correspond to Ada generics and to C++ 
templates. [2] 

Template class - A parameterized class. Template classes are implemented as generic packages in Ada, and to 
template classes in C++. Java does not currently support parameterized class definitions. [2] 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-21



DRAFT 

Template operation - A parameterized operation or method. Template operations are referred to as generic 
subprograms in Ada, and as template member functions in C++. Java does not currently support parameterized class 
definitions. [2] 

Test case - A set of test inputs, execution conditions, and expected results developed for a particular objective, such 
as to exercise a particular program path or to verify compliance with a specific requirement. [1] 

Testing - The process of exercising a system or system component to verify that it satisfies specified requirements 
and to detect errors. [1] 

Test procedure - Detailed instructions for the set-up and execution of a given set of test cases, and instructions for 
the evaluation of results of executing the test cases. [1] 

Timing analysis – A form of analysis to establish the temporal properties of the input/output dependencies. A 
common and important aspect of this analysis is the worst-case execution time for the correct behavior of the overall 
system. Certain languages offer features that make timing analysis difficult, e.g., loops without static upper bounds 
and the manipulation of dynamic data structures. [5] 

Tool qualification - The process necessary to obtain certification credit for a software tool within the context of a 
specific airborne system. [1] 

Traceability - The evidence of an association between items, such as between process outputs, between an output 
and its originating process, or between a requirement and its implementation. [1] 

Transition criteria - The minimum conditions, as defined by the software planning process, to be satisfied to enter a 
process. [1] 

Type - The concepts of type and class are in general distinguished, with a type representing an abstraction 
implemented by one or more classes.  In most of the classical object-oriented programming languages this 
distinction is not performed. [4] In UML and languages such as Java, however, a distinction is made between 
interface types (abstractions) and class types, which implement them. 

Type conversion - The act of producing a representation of some value of a target type from a representation of 
some value of a source type.  Type conversion is used to resolve mismatched types in assignments, expressions, or 
when passing parameters. Type conversions may be either implicit or explicit.  With implicit type conversion the 
compiler is given the responsibility for determining that a conversion is required and how to perform the conversion.  
With explicit type conversion the programmer assumes the responsibility.  

Unchecked type conversion - Types are unchecked if conversion from one type to the other does not include a 
determination either at compiler time or run time as to whether they are normally convertible.  

Unified Modeling Language (UML) - A language for specifying, visualizing, constructing, and documenting the 
artifacts of software systems, as well as for business modeling. The UML represents a collection of best engineering 
practices that have proven successful in the modeling of large and complex systems. [17] 

Use case - The specification of a sequence of actions, including variants, that a system (or other entity) can perform, 
interacting with actors of the system. [17] 

Validation - The process of determining that the requirements are the correct requirements and that they are 
complete. The system life cycle process may use software requirements and derived requirements in system 
validation. [1] 

Variables - Named memory locations that contain data that may change during software execution.  

Verification - The evaluation of the results of a process to ensure correctness and consistency with respect to the 
inputs and standards provided to that process. [1] 

Virtual - A C++ keyword that specifies a given method (member function) may be overridden in subclasses, and that 
calls to it are dispatching.   

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-22



DRAFT 

1.5 OOTiA Workshops 
NASA and FAA sponsored two OOTiA workshops for the purposes of: 

• Identifying safety and certification issues related to using OOT, 

• Coordinating and communicating with industry, government, and academia on OOT, 

• Working together to establish positions on the key OOT issues. 

The workshops were led and coordinated by a workshop committee and were attended by international 
representatives from government, industry, and academia (see section 1.5.1 for a list of workshop committee 
members and sections 1.5.2 and 1.5.3  for lists of workshop participants). OOTiA Workshop # 1 was held in April 
2002 and was followed by Workshop # 2 in March 2003.  

1.5.1 Committee 

Participant Affiliation 
J. Chilenski Boeing Commercial Airplanes 
G. Daugherty Rockwell Collins, Inc. 
K. Hayhurst NASA Langley Research Center 
C. Kilgore FAA Technical Center (AAR-470) 
J. Knickerbocker Sunrise Certification  & Consulting, Inc. 
J. Lewis FAA Headquarters (AIR-120) 
B. Lingberg FAA Headquarters (AIR-120) 
S. Obeid embeddedPlus Engineering 
B. Ocker FAA Chicago ACO (ACE-117C) 
T. Rhoads Goodrich 
L. Rierson FAA Chief Scientist (AIR-106N) 
W. Schultz Honeywell 
W. Struck FAA Transport Directorate (ANE-111) 
D. Wallace FAA Ft. Worth ACO (ASW-170) 

 

1.5.2 Participants in Workshop #1 
 

Participant Affiliation 
K. Achenbach Rolls-Royce Corporation 
M. Almesåker Saab AB Sweden 
J. Angermayer MITRE 
J. Auld NovAtel Inc. 
I. Baxter Semantic Designs 
A. Bell The Boeing Company 
D. Bernier Rockwell Collins 
B. Bianchi Ametek 
B. Bogdan Computer Science Corporation 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-23



DRAFT 

M. Brennan Applied Microsystems 
D. Brown Rolls-Royce plc 
V. Brown Honeywell, Inc. 
R. Butler NASA Langley Research Center 
B. Calloni Lockheed Martin Aeronautics Company 
R. Calloway NASA Langley Research Center 
S. Chappell Computer Science Corporation 
J. Chelini Verocel, Inc. 
J. Chilenski Boeing Commercial Airplanes  
M. Christie Universal Avionics Systems Corporation 
J. Coleman Hamilton Sundstrand 
O. Collins Raytheon - IATC 
M. Consiglio ICASE 
M. Cors Goodrich Avionics Systems 
J. Daly TRW (Aeronautical Systems) 
G. Daugherty Rockwell Collins, Inc. 
R. Deal Honeywell 
D. DeHoff Raytheon Technical Services Company 
M. DeWalt Certification Services, Inc. 
V. Dovydaitis Foliage Software Systems, Inc. 
P. Dunn Northrop Grumman Commercial Nav Systems 
G. Edmands The MITRE Corporation 
E. Edora Solers, Inc. 
C. Erwin FAA Wichita ACO (ACE-115) 
T. Ferrell FAA Consulting 
U. Ferrell FAA Consulting 
G. Finelli NASA Langley Research Center 
S. Fischer LITEF GmbH, Germany 
L. Framarini BAE Systems 
D. Geis Goodrich Avionics Systems 
G. Graessle Honeywell, Intl. 
S. Grainger Marinvent Corporation 
M. Gulick Solers, Inc. 
T. Hammer Honeywell 
K. Hayhurst NASA Langley Research Center 
M. Haynes Marinvent Corporation 
R. Hirt Raytheon Aircraft Company 
M. Holloway NASA Langley Research Center 
G. Horan FAA Engine Directorate (ANE-110) 
M. Isaacs FAA MMAC (AOS-240) 
D. Johnson Astronautics Corporation of America 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-24



DRAFT 

R. Johnson Bell Helicopter 
M. Jones NovAtel Inc. 
G. Kelly Honeywell 
C. Kilgore FAA Technical Center (AAR-421) 
J. Klein Lockheed Martin Air Traffic Management 
J. Knickerbocker Sunrise Certification  & Consulting, Inc. 
J. Knight University of Virginia 
T. Lambregts FAA Chief Scientist (ANM-113N) 
P. Lawrence Boeing 
J. Lee Boeing 
Y. Lee Arizona State University 
S. Leichtnam Computer Science Corporation 
J. Lewis FAA Headquarters (AIR-120) 
B. Lingberg FAA Headquarters (AIR-120) 
J. Masalskis Boeing 
J. Mason Boeing 
G. Millican Honeywell 
J. Monagan Rockwell Collins 
J. Monfret BarcoView 
B. Moody USAF 
B. Newman Astronautics Corporation of America 
S. Obeid embeddedPlus Engineering 
B. Ocker FAA Chicago ACO (ACE-117C) 
A. Oswald MITRE/CAASD 
C. Paganoni SAIC 
M. Patel WPAFB 
G. Pavlin Brightline Avionics GmbH 
L. Peckham NASA Langley Research Center 
T. Petroski Boeing 
M. J. Peuser Honeywell 
C. Pohlman Lockheed Martin Aeronautics Company 
G. Putsche Boeing 
H. Quach Lockheed Martin Corporation 
R. Rader Lockheed Martin  
R. Randall Boeing Wichita Modification & Maintenance Center 
T. Reeve Patmos Engineering Services 
T. Rhoads Goodrich FUS 
W. Rieger Boeing 
L. Rierson FAA Chief Scientist (AIR-106N) 
K. Rigby BAE Systems 
B. Rivet Hamilton Sundstrand 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-25



DRAFT 

D. Robinson FAA Headquarters (AIR-130) 
C. Rosay JAA-CEAT 
T. Roth Honeywell International Inc. 
V. Santhanam Boeing Wichita Development & Modification Center 
T. Schavey Smiths Aerospace 
S. M. Schedra Wind River Systems, Inc. 
W. Schultz Honeywell International 
M.l Smith Ametek 
F. Sogandares MITRE/CAASD 
M. Sonnek Honeywell 
R. Souter FAA Wichita ACO (ACE-116W) 
C. Spitzer AvioniCon 
E. Startzman Boeing Wichita Development & Modification Center 
D. Stephens Boeing 
W. Struck FAA Transport Directorate (ANM-111) 
D. Sungenis Computer Science Corporation 
A. Theodore UNITECH 
H. Thomas Honeywell, Inc. 
M. Valentin Airbus France 
J. Van Leeuwen United Technologies - Sikorsky Aircraft 
D. Wallace FAA Ft. Worth ACO (ASW-170) 
D. Woodward BAE Systems 
P. Wright Boeing 

 

1.5.3 Participants in Workshop #2 
 

Participant Affiliation 
G. Adams Lockheed Martin Aero 
J. Angermayer The MITRE Corp. 
J. Auld NovAtel 
F. Barber Avidyne Corporation 
B. Bianchi Ametek 
T. Bihari AMT Systems Engineering, Inc. 
R. Bogdan Computer Sciences Corporation 
F. Bortkiewicz The Boeing Company 
M. Brennan Metrowerks Corporation 
E. Brockway Lockheed Martin 
B. Brosgol Ada Core Technologies, Inc. 
D. Brown Rolls-Royce plc 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-26



DRAFT 

J. Burck Smiths Aerospace - Electronic Systems 
B. Cain METI 
J. Carlton Escher Technologies 
K. Carroll Lockheed Martin Aero 
P. Catlin Goodrich Avionics Systems, Inc. 
R. Chapman Praxis Critical Systems Limited 
R. Charley The Boeing Company 
J. Chelini Verocel, Inc. 
J. Chilenski The Boeing Company 
E. Chiuchiolo FAA 
K. Clegg University of York 
D. Coleman MDHI 
J. Coleman Hamilton Sundstrand 
M. Consiglio NASA Langley Research Center 
M. Cors Goodrich Avionics Systems 
D. Crocker Escher Technologies 
E. Danielson Rockwell Collins 
G. Daugherty Rockwell Collins 
T. Deaver Northrop Grumman 
L. Demeestere BarcoView 
M. DeWalt Certification Services, Inc. 
B. Dulic Transport Canada 
G. Edmands The MITRE Corporation 
C. Erwin FAA 
D. Fisher Ada Core Technologies, Inc. 
G. Frye FAA/AIR-130 
R. Fulton Honeywell  
E. Galiana CMC Electronics 
D. Geis Goodrich Avionics Systems 
C. Gibson Honeywell 
F. Guay FWGC 
M. Gulick Solers, Inc. 
D. Hatfield FAA 
R. Hawkins University of York 
M. Hawthornthwaite Engenuity Technologies 
K. Hayhurst NASA Langley Research Center 
M. Haynes Marinvent Corporation 
B. Hendrix Lockheed Martin Aeronautics Company 
R. Hirt FAA 
T. Hofmann Diehl Avionik Systeme GmbH 
M. Holloway NASA Langley Research Center 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-27



DRAFT 

S. Hutchesson Rolls-Royce plc 
M. Jones NovAtel 
R. Key FAA 
J. Kilchert Diehl Avionik Systeme GmbH 
J. Knickerbocker Sunrise Certification and Consulting 
J. Knight University of Virginia 
P. La Pietra Honeywell 
T. Lambregts FAA 
J. D. Lawrence DRPM AAA 
J. Lewis FAA 
B. Lingberg FAA 
J. Liscouski BAE Systems 
P. Maneely Honeywell 
E. Mannisto Honeywell 
S. Matthews Avidyne Corporation 
D. Mayerhoefer Green Hills Software 
M. Mehlich Semantic Designs, Inc. 
B. Mierow Hamilton Sundstrand 
G. Millican Honeywell 
S. Morton Applied Dynamics International 
S. Obeid Embedded Plus Engineering 
J. Offutt George Mason University 
R. Oracheff Paragon Transportation LLC 
L. Peckham NASA Langley Research Center 
M. Peuser Honeywell 
S. Ray BAE Systems Controls 
T. Reeve Patmos Engineering. Services 
B. Reynolds Rockwell Collins 
T. Rhoads Goodrich 
W. Richter Gulfstream 
L. Rierson FAA 
B. Rivet Hamilton Sundstrand - UTC 
D. Robinson FAA 
C. Rosay JAA/CEAT 
T. Roth Honeywell  
W. Ryan FAA 
L. Schad-Alford The Boeing Company 
K. Schlatter Jeppesen 
E. Schonberg Ada Core Technologies, Inc. 
V. Shapiro AMTI 
T. Smith Air Traffic Software Architecture 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-28



DRAFT 

C. Spitzer AvioniCon 
R. Stanley Air Traffic Software Architecture 
E. Startzman The Boeing Company 
J. Steidl Astronautics Corporation of America 
E. Strunk University of Virginia 
T. Swinehart Goodrich Avionics Systems, Inc. 
B. Thedford Hanscom AFB 
A. Theodore Unitech 
L. Thompson Honeywell  
M. Valentin AIRBUS France 
J. Van Leeuwen Sikorsky Aircraft 
D. Wallace FAA 
P. Whiston High Integrity Solutions Ltd 
M. Whitehurst The Boeing Company 
A. Wils K.U. Leuven 
M. Wittman Honeywell 
D. Woodward BAE Systems 
P. Wright The Boeing Company 

 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-29



DRAFT 

1.6 References  
1. Software Considerations in Airborne Systems and Equipment Certification, Document No. RTCA/DO-178B, 

RTCA Inc., 1828 L Street, Northwest, Suite 805, Washington, DC 20036, December 1, 1992. 

2. AVSI. Guide to the Certification of Systems with Embedded Object-Oriented Software, version 1.5. 

3. FAA AC 20-RSC, “Reusable Software Components”, draft 7, dated 05/12/03. ***Update when AC is final. 

4. Dictionary of Computer Science, Engineering, and Technology, Editor-in-Chief Phillip A. Laplante, CRC Press 
LLC, Boca Raton, Florida, 2001. 

5. Guide for the Use of the Ada Programming Language in High Integrity Systems, ISO/IEC PDTR 15942, July 1, 
1999, see http://anubis.dkuug.dk/JTC1/SC22/WG9/documents.htm  

6. Dedicated Systems Encyclopedia, available from http://www.dedicated-
systems.com/encyc/techno/terms/defini/def.htm  

7. Object-Oriented Technology in Aviation Program: http://shemesh.larc.nasa.gov/foot/ 

8. Booch, Grady.  Object-Oriented Analysis and Design.  Addison-Wesley, 2nd edition, 1994. 

9. Cuthill, Barbara.  “Applicability of Object-Oriented Design Methods and C++ to Safety-Critical Systems” from 
Proceedings of the Digital Systems Reliability and Safety Workshop (1993). 

10.  “Glossary of Software Engineering Terminology.” ANSI/IEEE Standard, 1983. 

11. Gomaa, Hassan. Software Design Methods for Concurrent and Real-time Systems.  Addison-Wesley, 1993. 

12. Hathaway, Bob.  “Frequently Asked Questions on Object-Oriented.” Web-site: 
http://www.cs.cmu.edu/Groups/AI/html/faqs/lang/oop/faq-doc-0.html. 

13. Meyer, Bertrand.  Object-Oriented Software Construction.  Prentice Hall, 2nd edition, 1997. 

14. Montlick, Terry.  “What is Object-Oriented Software?”  Web-site: http://www.softwaredesign.com/  

15. Pressman, Roger.  Software Engineering: A Practitioner’s Approach.  McGraw Hill, 4th edition, 1997. 

16. Schildt, Herbert.  Teach Yourself C++.  McGraw Hill, 1998. 

17. Object Management Group. OMG Unified Modeling Language Specification, version 1.3, June 1999, available 
from http://www.omg.org/technology/documents/vault.htm#modeling 

18. Liskov, Barbara and Jeanette Wing. “A Behavioral Notion of Subtyping”, ACM Transactions on Programming 
Languages and Systems, 16(6): 1811-1841, November 1994. 

19.  “Object-Oriented Technology (OOT) In Civil Aviation Projects: Certification Concerns”, CAST-4, January 
2000, http://www2.faa.gov/certification/aircraft/av-info/software/software.htm. 

20. Webster, Bruce F., Pitfalls of Object-Oriented Development, M&T Books, New York, New York, 1995. 

21. Object Management Group. OMG Unified Modeling Language Specification, version 1.4, September 2001, 
available from http://www.omg.org/technology/documents/formal/uml.htm 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-30

http://anubis.dkuug.dk/JTC1/SC22/WG9/documents.htm
http://www.dedicated-systems.com/encyc/techno/terms/defini/def.htm
http://www.dedicated-systems.com/encyc/techno/terms/defini/def.htm
http://shemesh.larc.nasa.gov/foot/
http://www.cs.cmu.edu/Groups/AI/html/faqs/lang/oop/faq-doc-0.html
http://www.softwaredesign.com/
http://www2.faa.gov/certification/aircraft/av-info/software/software.htm
http://www.omg.org/technology/documents/formal/uml.htm


DRAFT 

1.7 Feedback Form 

 

U.S. Department 
of Transportation 
 
Federal Aviation  
Administration 

 

Handbook Feedback Information 

 

Please submit any written comments or recommendations for improving this Handbook. You may also  
suggest new items or subjects to be added.  And, if you find an error, please tell us about it. 
 

Subject:  Handbook for Object-Oriented Technology in Aviation (OOTiA) 

 

To: Handbook POC,  FAA/AIR-120 

(Please check all appropriate line items) 

  An error (procedural or typographical) has been noted in paragraph _______ on                                                     

     page _______ . 

  Recommend paragraph _______ on page _______  be changed as follows: 

     (attach separate sheet if necessary) 

 

 

  In a future change to this Handbook, please include coverage on the following subject  

     (briefly describe what you want added): 

 

 

  Other comments: 

 

 

  I would like to discuss the above.  Please contact me. 

 

Submitted by: ________________________________________ Date: _________________ 

 

Phone: ____________________ Address: ________________________________________ 

Email: ____________________  Routing Symbol (if applicable): ______________________ 

 

NOTE:  This handbook does not constitute official policy or guidance from any of the certification authorities.  

1-31


	Handbook Introduction
	Purpose
	Background
	Acronym List

	Handbook Organization
	Scope
	Approach
	Volume 1: Handbook Overview
	Volume 2: Considerations and Issues
	Volume 3:Best Practices
	Volume 4: Certification Practices


	OOT Background
	OOT Basics
	Principles of OOT
	OOT Methodology
	OOT Languages
	Additional Key OO Concepts
	Further OOT Reading

	Glossary
	OOTiA Workshops
	Committee
	Participants in Workshop #1
	Participants in Workshop #2

	References
	Feedback Form

